Synthesis and molecular structure of $\left[\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{Mo}(\mathrm{CO})_{2}\right]_{2}\left(\mu, \eta^{2}-\mathrm{Sb}_{2}\right)$.

Formation of an $\mathbf{S b}=\mathbf{S b}$ double bond from metallic antimony

James R. Harper and Arnold L. Rheingold *
Department of Chemistry, University of Delaware, Newark, DE 19716 (U.S.A.)
(Received March 22nd, 1990)

Abstract

The complex $\left\{\left[\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{Mo}(\mathrm{CO})_{2}\right]_{2}\left(\mu, \eta^{2}-\mathrm{Sb}_{2}\right)\right\}$ (1), synthesized from the thermolytic reaction of $\left[\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{Mo}(\mathrm{CO})_{3}\right]_{2}$ and elemental antimony, is the first example of μ, η^{2} coordination of a four-electron diantimony fragment to a transition metal dimer. As determined by X-ray crystallography, 1 is a tetrahedral cluster characterized by a very short $\mathrm{Sb}-\mathrm{Sb}$ bond of $2.678(1) \AA$ bound side-on to form a plane nearly perpendicular to an elongated Mo-Mo bond of $3.114(1) \AA$.

The interactions of the Group-15 metalloids ($\mathrm{E}=\mathrm{P}$, As) with isoelectronic 15-electron transition-metal centers have generated a number of novel complexes [1]. For example, the thermolytic reactions of $\left[\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{Mo}(\mathrm{CO})_{3}\right]_{2}$ and the cycloorganopolyarsines [(RAs) ${ }_{n}$ where $\mathrm{R}=\mathrm{Me}, n=5 ; \mathrm{R}=\mathrm{Ph}, n=6$], have resulted in the sequential replacement of As by $\mathrm{CpMo}(\mathrm{CO})_{2}\left(\mathrm{Cp}=\boldsymbol{\eta}^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)$ in the tetrahedrane framework and the formation of $\mathrm{CpMo}(\mathrm{CO})_{2}\left(\eta^{3}-\mathrm{As}_{3}\right)$ [2], \{[CpMo$\left.\left.\left.(\mathrm{CO})_{2}\right)_{2}\right]\left(\mu, \eta^{2}-\mathrm{As}_{2}\right)\right\}$ (2) [3,4] and $\left\{\left[\mathrm{CpMo}(\mathrm{CO})_{2}\right]_{3}\left(\mu_{3}-\mathrm{As}\right)\right\}$ [5] (realgar, $\mathrm{As}_{4} \mathrm{~S}_{4}$, as the arsenic source). More recently yellow arsenic, As_{4}, has been used in the synthesis of arsenic-containing clusters [6].

We have now extended this mode of reactivity to antimony and report the synthesis and molecular structure of $\left.\left.\left\{\left[\mathrm{CpMo}(\mathrm{CO})_{2}\right)_{2}\right]\right\}\left(\mu, \eta^{2}-\mathrm{Sb}_{2}\right)\right\}$ (1), which represents the first example of a four-electron donor diantimony fragment coordinating in a side-on, μ, η^{2} fashion to a transition-metal dimer. Complex 1 is synthesized from the reaction of $\left[\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{Mo}(\mathrm{CO})_{3}\right]_{2}(0.752 \mathrm{~g}, 1.535 \mathrm{mmol})$ and elemental (metallic) antimony ($1.871 \mathrm{~g}, 15.37 \mathrm{mmol}$) in 15 ml of toluene in a sealed Carius tube heated in a sand bath $\left(180^{\circ} \mathrm{C}, 5 \mathrm{~d}\right)$. The filtrate of the cooled reaction mixture was chromatographed on an alumina column and 1 was isolated $\left(\mathrm{Et}_{2} \mathrm{O}, 10 \%\right.$ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) in low yield (4.3\%) [7*]. Recrystallization in toluene produced red, nearly isometric crystals suitable for X-ray diffraction [8*].

Fig. 1. Molecular structure and labelling scheme for 1. (CNT-Mo, 2.027(3); Mo-Mo(a), 3.114(1); $\mathrm{Mo}-\mathrm{Sb}, 2.762(1)$; $\mathrm{Mo}-\mathrm{Sb}(\mathrm{a}), 2.854(1) ; \mathrm{Sb}-\mathrm{Sb}(\mathrm{a}), 2.678(1) \AA$; $\mathrm{Mo}-\mathrm{C}(1)-\mathrm{O}(1), 176.1(4)$; $\mathrm{Mo}-\mathrm{C}(2)-\mathrm{O}(2)$, $172.5(4)^{\circ}$. CNT(1)-Mo-Mo(a)-CNT(2), -78.2°. $\mathbf{M o}-\mathbf{S b}-\mathrm{Sb}(\mathrm{a})-\mathrm{Mo}(\mathrm{a}), 86.5^{\circ}$.

The molecular structure of 1 as determined by X-ray crystallography is shown in Fig. 1. The midpoints of the $\mathbf{M o}-\mathrm{Mo}$ and $\mathrm{Sb}-\mathrm{Sb}$ vectors lie on a crystallographic two-fold axis. This distorted tetrahedral cluster framework is structurally analogous to the previously reported diarsenic complex (2) [3]. The side-on diantimony (and diarsenic) fragments form a plane which is nearly perpendicular with the Mo-Mo (a) bond (deviation $=3.5^{\circ}$). The cyclopentadienyl ligands are arranged in a staggered, cis-gauche arrangement (torsion angle $=-78.2^{\circ}$). Complex 1 possesses an extremely short $\mathrm{Sb}-\mathrm{Sb}$ bond (2.678(1) \AA). Previous examples of multiple $\mathbf{S b}-\mathbf{S b}$ bonds include: the triangular pinwheel complex $\left\{\left[\mathrm{W}(\mathrm{CO})_{5}\right]_{3}\left(\mu_{3}, \eta^{2}-\mathrm{Sb}_{2}\right)_{2}\right\}(3), \mathrm{Sb}-$ $\mathbf{S b}=2.663$ (3) \AA [9] (the shortest $\mathbf{S b}-\mathbf{S b}$ we are aware of), where the diantimony fragment acts as a six-electron donor; the stibinidene complexes $\left\{\left[\mathrm{M}(\mathrm{CO})_{5}\right]_{3}\left(\mu_{3}, \eta^{2}-\right.\right.$ $\left.\left.\mathrm{RSb}_{2}\right)_{2}\right\}(\mathrm{M}=\mathrm{W}, \mathbf{R}=\mathrm{Ph}, \mathrm{Sb}-\mathrm{Sb}=2.706(4) \AA$ A $[9] ; \mathbf{M}=\mathbf{C r}, \mathbf{R}=\mathrm{t}-\mathrm{Bu}, \mathrm{Sb}-\mathrm{Sb}=$ $2.720(3) \AA)[10]$; the metallocyclopropane analogue $\left\{\mathrm{Fe}(\mathrm{CO})_{4}\left[\eta^{2}-\left(\mathrm{SiMe}_{3}\right)_{2} \mathrm{CHSb}\right]_{2}\right\}$, $\mathbf{S b}-\mathbf{S b}=2.774(1) \AA[11]$; the tetraphenyltristibine anion $\mathrm{Ph}_{4} \mathbf{S b}_{3}^{-}, \mathbf{S b}-\mathbf{S b}=$ $2.761(1) \AA[12]$; and interspersed short distances in the Zintl anions $\mathbf{S b}_{7}^{3-}(\mathbf{S b}-\mathbf{S b}$ range $=2.717(2)$ to $2.906(2)$ and $2.692(4)$ to $2.880(4) \AA$, respectively) [13,14] and $\mathrm{Sb}_{4}^{2-}(\mathrm{Sb}-\mathrm{Sb}$ ave $=2.750(1) \AA)$ [13]. In comparison, representative distances for an $\mathrm{Sb}-\mathrm{Sb}$ single bond are $0.15-0.20 \AA$ longer as demonstrated in: cyclo($\mathrm{t}-\mathrm{BuSb})_{4}$, $2.818(2)$ [15]; cyclo $(\mathrm{PhSb})_{6}, 2.837(3)[16]$; and $\left\{\left[\left(\mathrm{CH}_{3}\right)_{3} \mathrm{Si}\right]_{2} \mathrm{Sb}\right\}_{2}, 2.867(1) \AA$ [17].

The nature of the bonding of the "naked" diantimony fragments in 1 and in 3 can be assessed through a comparison of $\mathbf{S b}-\mathbf{S b}$ and $\mathbf{M - S b}$ distances in the two complexes. The $\mathbf{S b}-\mathbf{S b}$ distance is $0.015 \AA$ longer in 1 , in which the Sb_{2} group is a

[^0]four-electron donor, compared to 3 where the group is an apparent six-electron donor; corresponding $\mathrm{Mo}-\mathrm{Sb}$ distances (2.762(1) and $2.854(1) \AA$) are skewed to accommodate the Cp rings (cf. 3.5° deviation from perpendicularity) and considerably shorter than the nearly equivalent W-Sb distances (3.016 (3) \AA) found in 3 . The Mo-Mo distance, $3.114(1) \AA$, is longer in 1 than in its As_{2} analogue, 3.039(2) \AA, reflecting the approximately $0.5 \AA$ increase in the pnictogen-pnictogen bond.

Several other products accompany the formation of 1 . We find mass spectrometric evidence for $[\mathrm{CpMo}(\mathrm{CO})]_{2}\left(\mu, \eta^{2}-\mathrm{Sb}_{2}\right)_{2}$ (for which the As analogue is known) [16], and crystallographic evidence for the formation of various fulvalene-substituted products, i.e., $\left\{\eta^{5}: \eta^{5}-\mathrm{C}_{10} \mathrm{H}_{8}\left[\mathrm{Mo}_{2}(\mathrm{CO})_{6}\right]\right\}$ and $\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\eta^{5}: \eta^{5}-\right.\right.$ $\left.\left.\mathrm{C}_{10} \mathrm{H}_{8}\right) \mathrm{Mo}_{3}(\mathrm{CO})_{6}\left(\mu_{3}-\mathrm{Sb}\right)\right]$. In the presence of $\mathrm{Mo}(\mathrm{CO})_{6}$, an $\mathrm{Mo}(\mathrm{CO})_{5}$ group caps Sb in the $\mathrm{Mo}_{3} \mathrm{Sb}$ tetrahedral complex $\left\{\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{Mo}(\mathrm{CO})_{2}\right)_{3}\left(\mu_{3}-\mathrm{Sb}\right)\left[\mathrm{Mo}(\mathrm{CO})_{5}\right]\right\}$. The formation of the fulvalene products is particularily intriguing, and a more complete study of reaction conditions and pathways leading to its formation is currently underway.

Acknowledgements. This research was partially supported by a grant from the Petroleum Research Fund administered by the American Chemical Society. The assistance of Gordon Nicol in obtaining the mass spectral data is acknowledged.

References and notes

1 A.-J. DiMaio and A.L. Rheingold, Chem. Rev., 90 (1990) 169.
2 A.-J. DiMaio, Ph.D. Thesis, University of Delaware, 1989.
3 P.J. Sullivan and A.L. Rheingold, Organometallics, 1 (1982) 1547.
4 G. Huttner, B. Sigwarth, O. Scheidsteger, L. Zsolnai and O. Orama, Organometallics, 4 (1985) 326.
5 K. Blechsmitt, H. Pfisterer, T. Zahn and M.L. Ziegler, Angew. Chem. Int. Ed. Engl., 24 (1985) 66.
6 O.J. Scherer, W. Wiedemann and G. Wolmershäuser, J. Organomet. Chem., 361, C11; O.J. Scherer, H. Sitzmann and G. Womerhäuser, Angew. Chem. Int. Ed. Engl., 28 (1989) 212; O.J. Scherer, Angew. Chem. Int. Ed. Engl., 24 (1985) 924.
$7{ }^{1} \mathrm{H} \mathrm{NMR}\left(250 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 4.367(5 \mathrm{H}) . \operatorname{IR}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): \boldsymbol{\nu}_{\mathrm{CO}} 1936,1885 \mathrm{~cm}^{-1}$. M.p. $252^{\circ} \mathrm{C}$. HRMS: 677.6705 (calcd. 677.676 amu).

8 Crystal data: $\left(23^{\circ} \mathrm{C}\right.$) for 1 , monoclinic, $I 2 / a$, a 14.457(9), b 7.627(7), с 16.865(11) $\AA, \beta 115.86(5)^{\circ}$, $V 1673.4(22) \AA^{3}, Z=4, D_{c} 2.765 \mathrm{~g} \mathrm{~cm}^{-3}, \mu\left(\mathrm{Mo}-K_{\alpha}\right) 46.62 \mathrm{~cm}^{-1}$. A Nicolet $\mathrm{R} 3 \mathrm{~m} / \mu$ diffractometer was used to collect 2125 data ($4^{\circ} \leqslant 2 \theta \leqslant 55^{\circ}$) of which 1916 were independent ($R_{\text {int }}=2.10 \%$) and 1599 with $F_{\mathrm{o}} \leqslant 6 \sigma\left(F_{\mathrm{o}}\right)$ were observed. The intensity data were corrected for absorption ($T_{\max } / T_{\text {min }}=$ $0.275 / 0.178$). The structure was solved by direct methods. All non-hydrogen atoms were refined with anisotropic thermal parameters, and hydrogen atoms were located and refined isotropically. At convergence $R(F) 2.62 \%, R_{\mathrm{w}}(F) 3.24 \%$, GOF $1.081, \Delta / \sigma 0.04, \Delta(\rho) 0.629 \mathrm{e}^{-3}, N_{\mathrm{o}} / N_{\mathrm{v}}=13.2$. Atomic coordinates, bond distances and angles, and thermal parameters may be obtained from one of the authors (ALR).
9 G. Huttner, U. Weber, B. Sigwarth and O. Scheidsteger, Angew. Chem. Int. Ed. Engl., 21 (1982) 215; Angew. Chem. Suppl., (1982) 414.
10 U. Weber, G. Huttner, O. Scheidsteger and L. Zsolnai, J. Organomet. Chem., 289 (1985) 357.
11 A.H. Cowley, N.C. Norman, m. Pakulski, D.L. Bricker and D.H. Russell, J. Am. Chem. Soc., 107 (1985) 8211.

12 R.A. Bartlett, H.V. Rasika Dias, H. Hope, B.D. Murray, M.M. Olmstead and P.P. Power, J. Am. Chem. Soc., 108 (1986) 6921.
13 S.C. Critchlow and J.D. Corbett, Inorg. Chem., 23 (1984) 770.
14 D.g. Adolphson, J.D. Corbett and D.J. Merryman, J. Am. Chem. Soc., 98 (1976) 7234.
15 O. Mundt, G. Becker, H.-J. Wessely, H.J. Breunig and H. Kischkel, Z. Anorg. Allg. Chem., 486 (1982) 70.

16 H.J. Breunig, K. Häberle, M. Dräger and T. Severengiz, Angew. Chem. Int. Ed. Engl., 24 (1985) 72.
17 G. Becker, H. Freudenblu and C. Witthauer, Z. Anorg. Allg. Chem., 492 (1982) 37.
18 A.J. DiMaio and A.L. Rheingold, J. Chem. Soc., Chem. Commun., (1987) 404.

[^0]: * Reference number with asterisk indicates a note in the list of references.

